翻訳と辞書
Words near each other
・ Postsecularism
・ Postsee
・ Postselection
・ Postsexualism (Michel Foucault)
・ Postsingular
・ Poststadion
・ Poststraße (KVB)
・ POSTNET
・ PostNet (company)
・ Postnet Omony
・ Postnik
・ Postnik Yakovlev
・ Postniki
・ Postnikov
・ Postnikov square
Postnikov system
・ PostNL
・ PostNord
・ PostNord Logistics
・ PostNord Sverige
・ Postnormal times
・ Postnuptial agreement
・ Posto Fronteiriço das Portas do Cerco
・ Posto Santo
・ Postobón
・ Postobón (cycling team)
・ Postoiciu River
・ Postojna
・ Postojna Cave
・ Postojna Gate


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Postnikov system : ウィキペディア英語版
Postnikov system
In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of constructing a topological space from its homotopy groups. Postnikov systems were introduced by, and named after, Mikhail Postnikov.
The Postnikov system of a path-connected space ''X'' is a tower of spaces …→ ''Xn'' →…→ ''X''1→ ''X''0 with the following properties:
* each map ''Xn''→''X''''n''−1 is a fibration;
* π''k''(''X''''n'') = π''k''(''X'') for ''k'' ≤ ''n'';
* π''k''(''X''''n'') = 0 for ''k'' > ''n''.
Every path-connected space has such a Postnikov system, and it is unique up to homotopy. The space ''X'' can be reconstructed from the Postnikov system as its inverse limit: ''X'' = lim''n'' ''X''''n''. By the long exact sequence for the fibration ''Xn''→''X''''n''−1, the fiber (call it ''K''''n'') has at most one non-trivial homotopy group, which will be in degree ''n''; it is thus an Eilenberg–Mac Lane space of type ''K''(π''n''(''X''), ''n''). The Postnikov system can be thought of as a way of constructing ''X'' out of Eilenberg–Mac Lane spaces.
==References==

*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Postnikov system」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.